連載 (講義)

Common Data Processing System Version 10 の使用法

- (6) シミュレーション -

吉原一紘* オミクロンナノテクノロジージャパン(株) 140-0002 東京都品川区東品川 3-32-42 IS ビル *k.yoshihara@omicron.oxinst.com

(2014年9月22日受理)

8. シミュレーション

COMPRO には角度分解法 XPS (ARXPS) により 測定される元素の検出強度の角度分布をシミュレー ションする[Simulate ARXPS]と、表面近傍のポテン シャル分布による観測スペクトルの変化をシミュ レーションする[Band bending analysis]の二つのシ ミュレーションソフトが組み込まれている.メ ニュー画面の[Simulation]をクリックするとシミュ レーションの選択画面が現れる.

🤞 Com	nmon Data Pi	rocessing Syst	em Version 12	2
File	Database	Calibration	Simulation	Multivariate analysis
			Simulat Band be	e ARXPS ending analysis

8.1. [Simulate ARXPS]

[Simulate ARXPS]を選択するとコンピューター画 面の左側に下の画面が現れる.

この図は青で示される元素 60%と赤で示される元 素 40%が均一に混ざった厚さ 2nmの薄膜がピンクで 示される元素の基板上に存在していることを示して いる.同時にコンピューター画面の右側には次に示

す画面が現れる. この画面を用いて,励起源,測定 時の取り込み角,相対誤差が入力できる. 薄膜を構 成する元素の数,薄膜の厚さ,各元素の遷移,結合 エネルギー,相対感度を入力する. なお,チェック ボックスにチェックを入れると相対感度データベー スが出現し,データベースの値を自動的に入力する ことが出来る. [calculate]ボタンをクリックすると, 上部に示される元素分布に対応した角度分解結果が 表示される.

得られた角度分解結果を次図に示す.縦軸は強度, 横軸は放出角度である.高角度で薄膜構成元素の強 度が小さくなるのは,取り込み角の影響である.な お,IMFPの値は全ての元素に対してデフォールト で2.5nmが与えられているが,データベースで元素 名,遷移を指定すると,TPP-2M 式で計算された値 に変更される.

ここで、マウスでデータ点をドラッグして元素分 布を変え、青色で示される元素を表面に偏析させた

分布を作成した例を示す.データ点は一点ずつド ラッグすることができるが,同時に複数点を移動さ せたいときには,あらかじめマウスで複数点を囲ん でグループを作り,それをドラッグする.

この元素分布に基づいた角度分解のシミュレー ション結果を下図に示す.

縦軸の表示は、コンピューターの右側画面の上部 のタブから[display option]を選択して[ordinate axis of ARXPS profile]のグループから選択すると変更でき る.

元のデータ処理の画面に戻るにはメニューバーから[Return]を選択する.

8.2. [Band bending analysis]

このシミュレーションは物質・材料研究機構の吉 川英樹博士が作成したプログラムを COMPRO に組 み込んだものである. なお,ファイルの読み込みや 画像の表示法は COMPRO で用いられる手法と同一 にしてある.

固体内で発生した光電子が放出されるときに、表面 近傍のポテンシャルの曲がりにより、どのように ピーク形状が影響されるかをシミュレーションする プログラムである.発生させる光電子スペクトルは Voigt 関数を用いて作成する.表面近傍のポテンシャ ルの曲がりは、linear(線形関数)、quadratic(二次関 数)、exponential(指数関数)を組み合わせて決定す る.ポテンシャルの曲がりは表面から最大5層に 渡って決定する.[Band bending analysis]を選択する と次の入力画面が現れる.

例として,発生させる光電子スペクトルの中央値 は 500eV,ピーク幅は 0.6eV,表示させる幅は 20eV, Voigt 関数の Lorentz 部分を 0.3(30%)と入力する.

減衰長さを 4.0nm, 放出角度を 45 度, ポテンシャ ルの曲がりを表面から3層に渡って, 直線, 二次関 数, 指数関数で設定する. 設定画面を次に示す.

ポテンシャル設定の際のパラメーターを使用して, ポテンシャル (*p*) と表面からの深さ(*d*) の関係を 以下に述べるような数式で記述する.

使用するパラメーターの値を次図の例で示すと,

Journal of Surface Analysis Vol.21, No. 2 (2014) p. 82-86 吉原一紘 Common Data Processing System Version 10 の使用法 (6) シミュレーション

simulation data	customize i	nput da	ita rar	nge			
source functio	n (Voigt func	tion)				measured	
center e	nergy (eV)	500.0	* +			open	
peak	width (eV)	0.60	* +			close	
displayı	range (eV)	20	*			simulation	
ratio of I	Lorentzian	0.30	*				
emission and	le					close	
attenuation le	ngth (nm)	4.0	•			ciose	
emiss	sion angle	45	*	表面が するが	から かをi	何層に渡って はじめに指定	:変化 :する。
potential of ba number of la	nd bending yers 3 🚔		当討 が有	観数か 在する	指知	官するポテン 町からの最大	ー シャル 深さ
	type	;	а	depth (nm)	potential (eV)	
No.1 layer li	near	•		2	0 (0.2 🧲	
No.2 layer q	uadratic	-	0.2	3	0	0.5 🌲	
No.3 layer	xponential	-	2.3	5	0	1.0 📫	
No.4 layer		-		÷ [* *	•	
No.5 layer		-	当調の	该関数) 最大値	が指	定するポテン	シャル

表面から第一層 (No.1 layer) は linear で, $d_1 = 0, p_1 = 0, d_2 = 2.0, p_2 = 0.2$, 第二層 (No.2 layer) は quadratic で $a = 0.2, d_1 = 2.0, p_1 = 0.2, d_2 = 3.0, p_2 = 0.5$, 第三層 (No.3 layer) は exponential で $a = 2.3, d_1 = 3.0, p_1 = 0.5$, $d_2 = 5.0, p_2 = 1.0$ となる. 次図にポテンシャル (p) と 深さ(d)の関係を表すパラメーターを模式的に示す.

これらのパラメーターを用いてそれぞれのポテン シャルの形状を次式で表す. linear の場合:

$$d = gradient \cdot (p - p_1) + d_1$$

$$\Box \Box \heartsuit gradient = (d_2 - d)/p_2 - p_1 \heartsuit b \Im$$

quadratic の場合:

$$d = (gradient + a(p - p_2)) \cdot (p - p_1) + d_1$$

exponential の場合:

$$d = \frac{(d_1 - d_2)(\exp(a \cdot p) - \exp(a \cdot p_1))}{(\exp(a \cdot p_1) - \exp(a \cdot p_2))} + d_1$$

としてポテンシャルが計算される.

今回の条件で計算された表面近傍のポテンシャル 分布は以下のように表示される.

この表面近傍におけるポテンシャルの曲がりによ り光電子スペクトルが変形する様子をシミュレー ションした結果が次図のように表示される.

Journal of Surface Analysis Vol.21, No. 2 (2014) p. 82-86 吉原一紘 Common Data Processing System Version 10 の使用法 (6) シミュレーション

シミュレーションに用いた Voigt 関数,及びポテ ンシャル分布とそれに用いた変数は[simulation] グ ループにある[save]ボタンをクリックすると<csv>形 式で保存される.なお,[open]ボタンをクリックす ると,保存したファイルを読み出して,画面上に表 示する.

シミュレーションで得られたスペクトルと実際に 測定したスペクトルを比較することが出来る.測定 したスペクトルは<csv>形式で保存されたスペクト ル,または ISO14976 形式で保存されたスペクトル ならば[measured]グループの[open]ボタンをクリッ クすると読み込むことが出来る.<csv>形式で保存さ れたスペクトルは[energy]と[intensity]の2列から構 成されていなくてはならない.取り込み角を変えて 取得されたスペクトルも読み込むことが出来る. ISO14976 形式では複数ブロックとして記述すれば 良いが,<csv>形式では以下のように emission angle ごとに行をブロック化して記述されていなくてはな らない.

energy	intensit	y
30	• •	
491.04	137.00	
490.99	120.00	
490.94	120.00	
490.89	131.00	
490.84	145.00	emission angle
490.79	127.00	
490.74	125.00	
-		
483.04	118.00	
482.99	125.00	
60	-	
491.04	68.00	
490.99	69.00	_
490.94	73.00	
490.89	79.00	
490.84	75.00	

例として, emission angle を 2°, 30°, 60°と変えた ときの実測スペクトルを用いて, シミュレーション 結果と比較した画面を示す. [measured]グループの [open]ボタンをクリックして実験データを読み込む と, シミュレーションに用いるピーク位置が自動的 に実験データのピーク位置になる.

なお, [peak width]や[ratio of Lorentzian]は手動入力が 必要である. ポテンシャル分布を設定するとスペク トルが表示される.

スペクトルの下部には実測スペクトルとシミュ レーションの差が表示される.この差を小さくする ように Voigt 関数のパラメーターやポテンシャルの 曲がりを手動で調整することを行う.比較表示をす る画面の[kai square]タブをクリックすると, emission angle と kai square の関係が表示される.

画面の表示色を変更したいときには次図に示すパ ネルで、変更したい画面を選択して線色等を指定す れば変更できる.

Voigt 関数やポテンシャルの形状を決定するとき の画面で入力条件がデフォールト値と大きく異なる ときには,入力が出来なくなる.その場合には [customize input data range]タブをクリックするとデ フォールト値を変更できる.

.1 - .01 -
.01 -
.01 👻
step
1 +
•
step
.1 🔻
.1 🔻
.1 👻
)

この画面を利用して,入力データ範囲を変更すれ ば大きく異なったデータにも対応できる.

元のデータ処理の画面に戻るにはメニューバーから[Return]を選択する.

8.3. COMPRO からのお願い

シミュレーションは表面分析において今後重要性 を増してくると思われますが,現在のところ, COMPRO にはここで解説した2種類のシミュレー ションソフトしか組み込まれていません. 会員の 方々から「このようなシミュレーションを組み込ん でほしい」,あるいは「こんなシミュレーションソフ トを作ったが COMPRO で試してほしい」というよ うなご意見・ご提案がございましたら,著者までご 連絡ください.